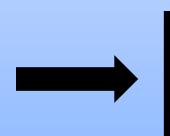
Cimprogetti Kilns and Firing Systems operating results Environmental friendly solutions with ALTERNATIVE-FUELS


Gianpaolo Gotti, M. Sc. Engineering Sales & Application Manager

INTRODUCTION

BALANCE ENVIRONMENTAL PROTECTION AND ECONOMIC GROWTH INTEREST

USE OF RENEWABLE FUELS AND

REDUCTION OVERALL CO₂ EMISSIONS

... a form of progress towards Environment Protection and Economic Growth

CASE STUDY

PROJECT MILESTONES

From the oldest lime plant (1896) ... a green-field lime plant

ROGETT

Cim-TD kiln 500 tpd dual fuel

the standard solid fossil fuel replaced with a wood based fuel

THE CHARACTERISTICS

- high quality of lime produced;
- environment care;
- reduction of operating costs and investment costs through innovative design solutions;
- diversification of energy sources;
- use of renewable fuels with consequent advantages on the energy trade balance.

Diversification of energy sources and use of renewable fuels is the great opportunity offered by Cimprogetti to Lime producers

THE RESEARCH

- replace fossil fuels with renewable fuels in order to reduce operating costs;
- 2. reduce atmospheric emissions of greenhouse gases;

3. diversify energy sources, hence the energy suppliers.

Confidential client

Cim-TD kiln 350 tpd dual fuel

Another successfully project with sawdust

PLANT CHARACTERISTICS

CONSTRUCTION YEAR		2012		
COMMISSIONING YEAR		2013		
NOMINAL CAPACITY (TONS/DAY)		350 tpd		
LIMESTONE SIZE		30-60 mm		
		40-90 mm		
SPECIFIC HEAT CONSUMPTION		840 Kcal/kg of lime (Saw Dust)		
AVERAGE RCO2		<2 % CO ₂		
REACTIVITY (T60 DIN)		2 min.		
FUEL	Түре	Natural Gas or Saw Dust (2% H2O)		

CIMPROGETTI®

OTHER REFERENCES

2011


Carmeuse S.A. (Moha, Belgium) Fuel conversion of a competitor PFR kiln, 420 tpd, lignite/saw dust fired

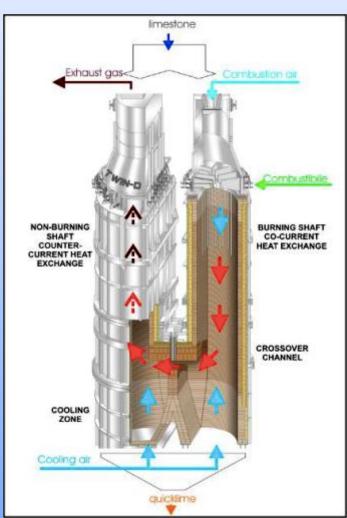
CIMPROGETTI®

OTHER REFERENCES

2013

Carmeuse Holding S.R.L. (Deva, Romania) Fuel conversion on a competior PFR kiln, 250 tpd, lignite/saw dust fired

PLANT OPERATION


TECHNOLOGY "Parallel Flow Regenerative"

Regenerative neat recovery in two snatts, which are alternatively under combustion and preheating

PROCESS

Chemical reaction of decarbonation of the limestone alternately in one of the two connected shafts of the kiln

The regenerative preheating process has very low fuel consumption and allows a total control over heat exchange, resulting in optimal product uniformity.

TYPICAL FUEL PROPERTIES

Fuel		Saw dust	Pet coke	Coal (Typical)
LHV	kcal/kg (dry)	3,750	8,100	6,750
Volatile matter	%	<60	8-12	6-30
Fineness (res. 90μm)	%	30	<10	15
Moisture	%	<5	< 1	<1.5
Ash	%	<3	<1	<15

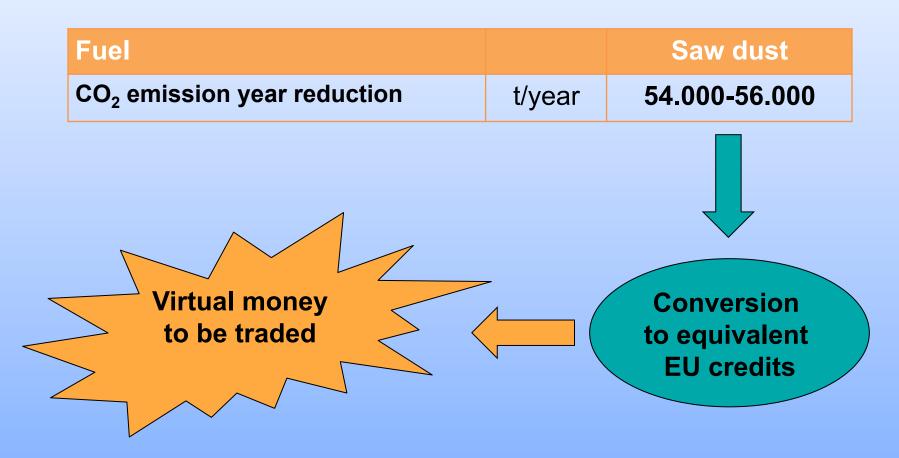
CIMPROGETTI®

PROPERTIES OF GAS AT CHIMNEY @11% of O₂ dry

		After	
		performance test	
Dust	mg/Nm ³	10	
02	% dry	9-10	
NO _x	mg/Nm ³ @11%O ₂ dry	< 500	
SO _x	mg/Nm ³ @11%O ₂ dry	< 200	
СО	mg/Nm ³ @11%O ₂ dry	< 500	
CO ₂ (*)	% dry	20-22	

CO₂ EMISSIONS PRODUCED BY THE KILN

Fuel		Petroleum-	Coal	Saw dust
		coke		
Production	tpd	500	500	500
CO ₂ from limestone	Kg/h	15,062	15,062	15,062
calcinations (2% Res. CO ₂)				
CO ₂ from fuel (hour)	Kg/h	6,878	7,104	0 - see*
CO ₂ from fuel (daily)	t/day	165	170.5	0 - see*
CO ₂ from fuel (330 day/	t/year	54,450	56,265	0 –see*
year)				


* Using renewable energy from wood biomass (sawdust):

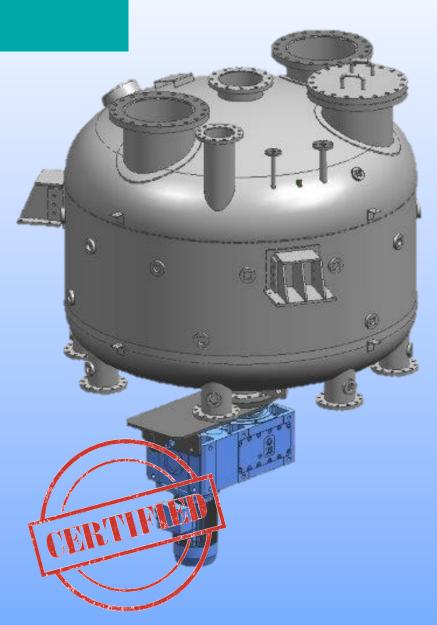
Amount CO_2 emissions during burning = Amount of CO_2 absorbed by trees during their growth

EMISSION INTO THE ENVIRONMENT = 0

CO₂ EMISSIONS SAVING

FUEL SELECTION... THE DRIVING FORCE

In lime industry fuel represents about 40% to 50 % of the total production cost.



CIM-FIRESOLID COMBUSTION SYSTEM

Cimprogetti combustion system is currently successfully tested worldwide.

- Outstanding repeatability on the fuel feeding time for several cycles (this is a guaranteed value from Cimprogetti)
- Possibility to use several <u>different</u> <u>RENEWABLE FUELS</u> in addition to Saw Dust

CONCLUSIONS

ADVANTAGES OF ALTERNATIVES FUELS FOR TSR KILNS:

1.fossil fuel substitution with renewable fuel;

2. reduction of GHG emission;

3.reduction of operation costs due to use of cheaper fuels;

4.special credits can be achieved by national or local governments for use of biomass as fuel;

5.co-firing of sawdust & RDF (thermal recovery from selected waste material); 6.use of raw gas (SYNGAS) for lime production (large possibility of use of waste material without pre-selection);

7.thermal recovery of waste material (burning) reduce proportionally the need to landfill it, with evident environmental improvement

Thank you for your attention

Gianpaolo Gotti, M. Sc. Engineering Sales & Application Manager

